

MODIS/Aqua Quality Assessment

Bryan Franz

SAIC

Ocean Color Discipline Processing Group

MODIS/Aqua Calibration and Algorithm Testing

- Perform independent evaluation of each potential change in calibration or processing algorithms
 - relative to previous configuration
 - relative to in situ
 - relative to SeaWiFS
- For each potential change:
 - recompute vicarious calibration (one gain per band for all time)
 - re-evaluate *in situ* match-ups
 - evaluate temporal trends over entire mission
 - process first 4-days of each 32-day period
 - reduce to common bins with SeaWiFS
 - compare global and regional averages over time
 - complete evaluation in approximately 2 days

Aqua Calibration and Algorithm Test Sequence

- AT01: Fresnel BRDF, no polarization correction, log-fitted L1B LUT
- AT02: AT01 with standard polarization correction
- AT03: AT01 with corrected phase polarization correction
- AT04: AT03 with Gothic-R BRDF
- AT05: AT03 with Gothic-R + f/Q BRDF
- AT06: AT01 with corrected phase and magnitude polarization correction
- AT07: AT06 with HIGLINT masking
- AT08: AT07 with reduced cloud threshold (0.027)
- AT09: AT06 with reversed polarizer rotation
- AT10: AT07 with reduced cloud threshold (0.022)
- AT11: AT08 with updated L1B LUT (V4.3.1.5S)
- AT12: AT11 with Fresnel + f/Q BRDF
- AT13: AT15 with alternate L1B LUT (piece-wise polynomial fit)
- AT14: AT11 with modified polarization (NIR from Terra)
- AT15: AT11 with updated vicarious calibration

SeaWiFS Lw OCDPS R4

MODIS/Aqua Lw OCDPS R0

SeaWiFS OCDPS R4 OC4 Chlorophyll

MODIS/Aqua OCDPS R0 OC3 Chlorophyll

Annual Repeatability in nLw

Deep-Water Subset, 8-Day Bins

Temporal stability of MODIS/Aqua still not demonstrated.

nLw: MODIS/Aqua vs SeaWiFS Deep-Water

MODIS/Aqua water-leaving radiances show long-term decay relative to SeaWiFS, in addition to a seasonal cycle.

nLw: MODIS/SeaWiFS Ratio Trends Deep-Water

Aqua shows much better short-term stability than MODIS/Terra.

Bifurcation makes sense. Relative to SeaWiFS, the 488 and 551 bands should be elevated at chlorophylls typical of deep water (~0.2 mg/m³).

nLw: MODIS/Aqua vs SeaWiFS

Seasonal differences of +/- 10% between SeaWiFS and MODIS/Aqua still evident at high latitudes (high solar zenith). After polarization correction, behavior is spectrally consistent, but cause is unknown.

MODIS/Aqua vs SeaWiFS

Northern Pacific

MODIS & SeaWiFS B-Day Chlorophylla, PacN40 Subset

SeaWiFS: solid line MODIS: dashed line

Chlorophyll agreement is very good. Rrs band ratios do not show seasonal cycle relative to SeaWiFS.

MODIS/Aqua vs SeaWiFS

Northern Pacific

Epsilon agreement is very good. NIR band ratios do not show seasonal cycle relative to SeaWiFS.

MODIS/Aqua vs SeaWiFS

Northern Pacific

AOT does show seasonal cycle relative to SeaWiFS. AOT is also higher for MODIS.

Excess signal at 869nm? OOB?

RVS and Striping

Causes of RVS

- Change in mirror reflectivity per AOI
- Change in mirror polarization sensitivity with AOI
- Systematic error in atmospheric correction with viewing angle
- Uncorrected surface BRDF

Causes of Striping

- Detector gain differences (may include non-linearity)
- Detector RSR differences
 - effects will vary with source spectral shape
- Slight differences in mirror AOI per detector
 - reflectivity of mirror per side, per AOI
 - polarization sensitivity per side, per AOI
- Error in geometry dependence of atmospheric correction model

Causes of Banding

- Change in mirror reflectivity per side
- Side-specific RVS, polarization sensitivity differences

MODIS/Aqua TOA Radiance

412 nm, Eastern Scan Edge

Striping is visible in TOA radiances, but some of this striping is expected: due to variation in viewing geometry per detector which results in a variation in observed atmospheric signal.

MODIS/Aqua Variation of Geometry Along-Track Eastern Scan Edge

Variation of Rayleigh Radiance Along-Track

This means, for oceans, we can not use simple statistical methods on TOA signal (e.g., histogram equalization) to remove residual striping.

Effect of MCST Solar Diffuser Destriping Correction

surface reflectance at 412nm, normalized to detector 5

Before application of detector-dependent SD calibration.

After application of detector-dependent SD calibration.

Residual Striping in nLw

Mean % Difference per Detector Relative to 7-Day Mean

Effects of BRDF on Scan-Dependence of MODIS/Aqua nLw low chl water ($C < 0.15 \text{ mg/m}^3$) day 2002 226

100D

Fresnel Red

Morel R Blue

Morel $\Re + f/Q$ Green

Effects of BRDF on Scan-Dependence of SeaWiFS nLw clear water ($C < 0.15 \text{ mg/m}^3$)

Reducing RVS and Striping Artifacts Instrument Approach

- On-board calibration: evaluate alternate LUTs
 - no detector-dependence in SD m1s
 - alternate temporal models for fitting detector-dependent SD m1s
 - no RVS correction
 - just pre-launch RVS correction
 - pre-launch + 2-point (solar-lunar) time-dependent correction
 - pre-launch + 3-point (solar-lunar-srca) time-dependent correction (Terra)
- Pre-launch polarization
 - evaluate change to per-detector polarization sensitivity
 - optical models indicate that dependency should exist
 - preliminary tests show no benefit to Aqua
 - quality of Aqua pre-launch polarization measurements may not be sufficient to determine detector dependence

Reducing RVS and Striping Artifacts Vicarious Approach

- Derive vicarious RVS per detector
 - calibrate MODIS to multi-day MODIS Level-3 composite
 - detector and scan-dependence minimized in Level-3
 - derive mean gain per band, detector, mirror-side at each scan pixel
 - capability is in development
- Derive vicarious RVS and polarization sensitivity per detector
 - calibrate MODIS using SeaWiFS Level-2 nLw and/or aerosol retrievals
 - SeaWiFS is stable with time, insensitive to polarization
 - provides global distribution of predicted TOA radiances to characterize effects with varying viewing and solar geometry.
 - band-pass differences must be accounted for via spectral models (Morel)
 - added uncertainty due to time-of-day differences (BRDF)
 - simultaneous optimization for scan-dependent gain and polarization sensitivities (M11, M12, M13) per band, detector, mirror-side
 - initial results are now being evaluated

MODIS Calibration and Characterization Effects on Ocean Color

Bryan Franz

SAIC

Ocean Color Discipline Processing Group

Ocean Product Sensitivity to Calibration

A 1% error in TOA radiance translates to an error of 10% or more in retrieved water-leaving radiances.

MODIS/Aqua Calibration and Algorithm Testing

- Perform independent evaluation of each potential change in calibration or processing algorithms
 - relative to previous configuration
 - relative to in situ
 - relative to SeaWiFS
- For each potential change:
 - recompute vicarious calibration (one gain per band for all time)
 - re-evaluate *in situ* match-ups
 - evaluate temporal trends over entire mission
 - process first 4-days of each 32-day period
 - reduce to common bins with SeaWiFS
 - compare global and regional averages over time
 - complete evaluation in approximately 2 days

Aqua Calibration and Algorithm Test Sequence

- AT01: Fresnel BRDF, no polarization correction, log-fitted L1B LUT
- AT02: AT01 with standard polarization correction
- AT03: AT01 with corrected phase polarization correction
- AT04: AT03 with Gothic-R BRDF
- AT05: AT03 with Gothic-R + f/Q BRDF
- AT06: AT01 with corrected phase and magnitude polarization correction
- AT07: AT06 with HIGLINT masking
- AT08: AT07 with reduced cloud threshold (0.027)
- AT09: AT06 with reversed polarizer rotation
- AT10: AT07 with reduced cloud threshold (0.022)
- AT11: AT08 with updated L1B LUT (V4.3.1.5S)
- AT12: AT11 with Fresnel + f/Q BRDF
- AT13: AT15 with alternate L1B LUT (piece-wise polynomial fit)
- AT14: AT11 with modified polarization (NIR from Terra)
- AT15: AT11 with updated vicarious calibration

Solid line: AT06 polarization correction Dashed line: original polarization correction

NH

nLw: MODIS/Aqua vs SeaWiFS 50N-40N, 150W-170W

SH

nLw: MODIS/Aqua vs SeaWiFS 50S-40S, 150W-170W

Before Polarization Correction MODIS SeaWiFS

AT01

ST03

After Polarization Correction MODIS SeaWiFS

AT06

ST03

Aqua Calibration and Algorithm Test Sequence

- AT01: Fresnel BRDF, no polarization correction, log-fitted L1B LUT
- AT02: AT01 with standard polarization correction
- AT03: AT01 with corrected phase polarization correction
- AT04: AT03 with Gothic-R BRDF
- AT05: AT03 with Gothic-R + f/Q BRDF
- AT06: AT01 with corrected phase and magnitude polarization correction
- AT07: AT06 with HIGLINT masking
- AT08: AT07 with reduced cloud threshold (0.027)
- AT09: AT06 with reversed polarizer rotation
- AT10: AT07 with reduced cloud threshold (0.022)
- AT11: AT08 with updated L1B LUT (V4.3.1.5S)
- AT12: AT11 with Fresnel + f/Q BRDF
- AT13: AT15 with alternate L1B LUT (piece-wise polynomial fit)
- AT14: AT11 with modified polarization (NIR from Terra)
- AT15: AT11 with updated vicarious calibration

Log-fit m1 (red) and piece-wise polynomial m1 (blue)

nLw: MODIS/Aqua vs SeaWiFS Deep-Water

Effect of alternate L1B LUT, piecewise polynomial fit to SD m1s.

nLw: MODIS/Aqua vs SeaWiFS

Deep-Water

Effect of alternate L1B LUT: piecewise polynomial fit to SD m1s. Increased variability in chlorophyll relative to SeaWiFS.

MODIS/Aqua R0 Processing Decisions

- Multiple MCST LUTs evaluated
 - measured m1
 - smoothed, log-fitted m1
 - piece-wise polynomial m1
 - use log-fitted m1 with periodic updates for baseline processing
- Polarization sensitivity (see poster by Meister et al.)
 - laboratory set-up and test results re-evaluated
 - new sensitivities derived (2x magnitude, phase-shifted)
 - new polarization corrections adopted for baseline reprocessing
- Vicarious calibration
 - one gain per band for all time
 - visible bands determined using MOBY
 - NIR bands determined using assumed aerosol-type

Annual Repeatability in nLw

Deep-Water Subset, 8-Day Bins

Temporal stability of MODIS/Aqua still not demonstrated.

nLw: MODIS/Aqua vs SeaWiFS Deep-Water

MODIS/Aqua water-leaving radiances show long-term decay relative to SeaWiFS, in addition to a seasonal cycle.

nLw: MODIS/Aqua vs SeaWiFS

Seasonal differences of +/- 10% between SeaWiFS and MODIS/Aqua still evident at high latitudes (high solar zenith). After polarization correction, behavior is spectrally consistent, but cause is unknown.

Product Development

Bryan Franz

SAIC

Ocean Color Discipline Processing Group

Calibration Updates

Multiple MCST LUTs evaluated

- measured m1
- smoothed, log-fitted m1
- piece-wise polynomial m1
- use log-fitted m1 with periodic updates for baseline processing
- http://seawifs.gsfc.nasa.gov/staff/franz/l3trend/modisa_testing.html

Vicarious calibration

- one gain per band for all time
- visible bands determined using MOBY
- NIR bands determined using assumed aerosol-type
- calibration re-evaluated for each test configuration
- http://seabass.gsfc.nasa.gov/cgi-bin/vicarious.cgi?sensor=a

Algorithm Updates

- Polarization sensitivity correction
 - laboratory set-up and test results re-evaluated
 - new sensitivities derived (2x magnitude, phase-shifted)
 - a series of test were performed to verify improvement
 - temporal trend comparisons with SeaWiFS
 - new polarization corrections adopted for baseline reprocessing
 - http://seawifs.gsfc.nasa.gov/staff/franz/l3trend/modisa_testing.html
 - http://oceancolor.gsfc.nasa.gov/DOCS/polcormemo.pdf
- Bi-directional reflectance correction
 - several strategies evaluated: Fresnel, Morel R, Morel R + f/Q,
 Fresnel + Morel f/Q
 - decision to stay with Fresnel for baseline processing
 - http://seawifs.gsfc.nasa.gov/staff/franz/l3trend/modisa_testing.html
 - http://seabass.gsfc.nasa.gov/eval/fq.cgi

Derived Product Updates

• SST

- enhanced to allow use of Reynolds OI SST as input
- detailed intercomparison with MODAPS products performed
- exact match demonstrated at Level-2 (given same input SST)
 - required correction of MODAPS code for OISST interpolation error

- only remaining issue is Level-3 quality masking
 - MODAPS approach has been analyzed in detail
 - implementation plans TBD
- http://seabass.gsfc.nasa.gov/eval/sst.cgi

Additional Derived Products

- Fluorescence Line Height
 - implementation in progress
- Carder Chlorophyll and IOP model
 - obtained existing code (MODIS and SeaWiFS variants)
 - implemented in MS112
 - generalized for multiple sensors
 - tests performed to verify implementation
 - expected to be included with next SeaDAS update
 - global processing TBD by Working Group recommendations
 - http://seawifs.gsfc.nasa.gov/staff/franz/carder/
 - http://seabass.gsfc.nasa.gov/eval/usf.cgi

Carder Chlorophyll Example

MODIS

SeaWiFS

Additional Derived Products

- Calcite, 2-band algorithm (Gordon, Balch, Boynton)
 - implementation in progress
- Calcite, 3-band algorithm (Gordon, Balch, Boynton)
 - obtained existing code (MODIS and SeaWiFS variants)
 - updated implemention in MS112
 - generalized for multiple sensors
 - revised out-of-band correction
 - rewritten in C with improved iteration control
 - tests performed to verify implementation
 - expected to be included with next SeaDAS update
 - global processing TBD by Working Group recommendations

Calcite, 3-band Algorithm

Other Products Available in MSL12/SeaDAS

- Various empirical chlorophyll algorithms
 - OC2, OC3, Clark, etc.
- Garver, Siegel, Maritorena 2001 model
 - chl, bb, acdm
- Clark TSM & POC
- Aerosol properties
 - AOT, Angstrom, models, etc.
- Various intermediate products
 - Lr, La, tLg, Rrs, etc.
- Ancillary fields
 - wind, pressure, ozone, SSTref, etc.

BRDF Analyses

Effects of BRDF on Scan-Dependence of SeaWiFS nLw clear water ($C < 0.15 \text{ mg/m}^3$)

Effects of BRDF on Scan-Dependence of SeaWiFS nLw low chl water ($C < 0.15 \text{ mg/m}^3$) day 2004 003

Fresnel Red

Morel R Blue

Morel $\Re + f/Q$ Green

200

1000

PIXEL NUMBER

Derived by ratio of SeaWiFS Level-2 nLw with SeaWiFS 7-day Level-3 binned nLw.

Effects of BRDF on Scan-Dependence of SeaWiFS nLw moderate chl water ($C > 0.15 \text{ mg/m}^3$) day 2004 003

Effects of BRDF on Scan-Dependence of MODIS/Aqua nLw low chl water ($C < 0.15 \text{ mg/m}^3$) day 2004 003

Effects of BRDF on Scan-Dependence of MODIS/Aqua nLw low chl water ($C < 0.15 \text{ mg/m}^3$) day 2002 226

100D

Fresnel Red

Morel R Blue

Morel $\Re + f/Q$ Green

Polarization Correction

Solid line: AT06 polarization correction Dashed line: original polarization correction

nLw: MODIS/Aqua vs SeaWiFS

50N-40N & 40S-50S, 150W-170W

Original Polarization Correction

nLw: MODIS/Aqua vs SeaWiFS

50N-40N & 40S-50S, 150W-170W

OCDPS R0 Processing

TOA Radiance Comparisons

TOA Radiance Comparison: MODIS/Aqua vs SeaWiFS

TOA Radiance Comparison: MODIS/Aqua vs SeaWiFS

TOA Radiance Comparison: MODIS/Aqua vs SeaWiFS

Vicarious Calibration

MODIS/Aqua Vicarious Calibration

- Same approach used for other sensors (SeaWiFS)
- Fix gain at 869 nm to 1.0
- Set gain at 748 nm to yield assumed aerosol type, on average
- Set visible gains to match MOBY, on average

	412	443	488	531	551	667	749	869
Gain	0.970	0.975	0.9776	0.9852	0.9844	0.9732	0.9789	1
Std Dev	0.003	0.005	0.0086	0.0079	0.0077	0.0037	0	0

In Situ Validation

SeaWiFS Lw OCDPS R4

MODIS/Aqua Lw OCDPS R0

SeaWiFS OCDPS R4 OC4 Chlorophyll

MODIS/Aqua OCDPS R0 OC3 Chlorophyll

In Situ Match-up Distribution SeaWiFS

SeaWiFS

In Situ Match-up Distribution MODIS/Aqua

Chlorophyll Algorithm

OC3 vs OC4

(Simulated Differences Based on Morel and Maritorena 2001)

Misc

SeaWiFS Annual Repeatability in nLw Deep-Water Subset, 8-Day Bins

SeaWiFS temporal stability is well established.

MODIS/Aqua Annual Repeatability in nLw Deep-Water Subset, 8-Day Bins

Repeatability for MODIS/Aqua has not yet been demonstrated.

NH

Chl: MODIS/Aqua vs SeaWiFS 50N-40N, 150W-170W

SH

Chl: MODIS/Aqua vs SeaWiFS 40S-50S, 150W-170W

		Chlor_a	Chlor_a	nLw_412	nLw_412	nLw_443	nLw_443	nLw_490	Chlor_a nLw_412 nLw_412 nLw_443 nLw_443 nLw_490 nLw_490 nLw_555 nLw_555	nLw_555	nLw_555
Sensor	Subset	mean	stdev	mean	stdev	mean	stdev	mean	stdev	mean	stdev
SeaWiFS Clear	Clear	0.077	0.0035	2.197	0.0719	1.856	0.0493	1.249	0.0179	0.296	0.0042
MODIS	Clear	7/10.0	0.0036	2.152	0.0926	1.833	0.0729	1.282	0.0377	0.315	0.0123
SeaWIFS Deep	Deep	0.183	0.0125	1.736	0.0529	1.530	0.0372	1.134	0.0186	0.334	0.0068
MODIS Deep	Deep	0.189	0.0154	1.689	0.0850	1.496	0.0599	1.148	0.0371	0.344	0.0159
SeaWiFS Coastal	Coastal	1.115	0.2043	0.778	0.0580	0.862	0.0475	0.888	0.0420	0.474	0.0285
MODIS Coastal 1.340	Coastal	1.340	0.2352	0.727	0.0837	0.848	0.0561	0.916	0.0465	0.501	0.0299
	The state of the s		A females and a female and a fe	The state of the s	The state of the s						